基于接触式测量的返回式卫星结构 轮廓度检测方法研究

樊晓霞 仉恒毅 张玉良 赖小明 (北京卫星制造厂,北京100094)

摘要:论述了一种基于接触式测量的返回式卫星结构的轮廓度检测方法,针对此方法开展了检测误差理论分析,提出了检测误差补偿方式,并进行了试验验证,提高了返回式卫星 结构轮廓度检测的准确性。

关键词: 球锥相贯形舱体; 轮廓度检测; 误差补偿

A Profile Detection Method of Ball-cone Intersecting Shell

Fan Xiaoxia Zhang Hengyi Zhang Yuliang Lai Xiaoming (Beijing Spacecrafts, Beijing 100094)

Abstract: This paper discusses a profile detection method of the ball-cone intersecting shell. A profile detection method for error compensation is put forward, and the precision of the profile detection is improved.

Key words: ball-cone intersecting shell; profile detection; error compensation

1 引言

返回式卫星金属壳体结构大多为薄壁密封舱体, 主要由球面、锥面或柱面组成,通常称其为球锥相贯 形舱体。在舱体金属结构上分布有法兰舱体,金属结 构外侧为防热结构,金属结构的外轮廓直接影响防热 结构与金属结构的间隙大小以及防热结构的精度、重 量,因此检测数据的准确性至关重要。

2 轮廓度检测位置定义

图 1 某型号侧壁金属壳体结构简图

以某型号侧壁金属壳体结构为研究对象(图1), 研究其轮廓度的检测方法及误差补偿方式。图1中某 型号侧壁金属壳体结构,属于典型蒙皮加筋的薄壁密 封舱体,主要由前后端框、蒙皮、法兰、隔框、桁条 以及盒形件等组成,其球段蒙皮半径为*SR*533.8mm, 轮廓度要求较高为-3~+1mm。

某型号侧壁金属壳体结构轮廓度检测位置定义 如下:

a. 高度:以前端框上表面为基准,自上而下10mm 位置、50mm 位置、100mm 位置、……、900mm 位 置,共计19 圈;

3 轮廓度测量方法简介

轮廓测量法是通过测量获得工件表面采集点的 实际坐标值,与理论坐标值对比,分析得到工件表面 面形误差的测量方法。轮廓度测量可以分为接触式测 量和非接触式测量两类。接触式测量通过测量仪器探 头与被测工件表面相接触,通过采集测量仪器探头在 工件坐标系中的实际位置,并与理论位置对比,得到 被测工件表面的轮廓形状误差。非接触式测量使用光 电、电磁等测量设备,在不接触被测工件表面的情况 下,得到工件表面采集点坐标参数信息的测量方法。

接触式测量由于仪器探头与工件表面存在直接 接触,导致测量力的存在,增加划伤工件表面的危险, 但测量数据相对较可靠,环境适应性强,常用的有机 床打表法和三坐标检测法。非接触式测量法避免了接 触式测量法由于测量力的存在而产生的问题,但工件 表面粗糙度以及检测环境对检测数据的准确度影响 较大,常用的有三维扫描法,此方法由于需对被测件 进行多角度扫描,因此存在基准复合误差。因此,本 文选用接触式测量法^[1~6]。

4 接触式轮廓度检测误差分析

利用接触式测量法进行轮廓度测量时,测量误差 主要由以下几方面构成:检测系统误差、测量过程误 差以及测量探头具有一定尺寸所引起的误差。

4.1 检测系统误差

目前返回式卫星金属壳体结构大多采用六轴五 联动镗铣加工中心采集轮廓度采集点的数据。

检测设备采用 FPT 六轴五联动/镗铣机床,精度 可达 0.006mm/m。某型号侧壁金属壳体结构最大外形 尺寸约为 ϕ 1300mm,因此机床自身精度引起的轮廓 度测量误差约为: $\delta_{\text{tt}} < \phi$ 1.3m×0.006mm/m=0.008mm。 侧壁金属壳体结构组合加工后的前后端框同轴度、平 行度均小于 0.1mm,其同轴度、平行度对轮廓度测量 引起的误差相对于轮廓度要求-3~+1mm 极小,可以 忽略不计。

所以侧壁金属壳体结构的轮廓度测量总误差 δ_{n} <0.108mm,与设计要求的轮廓度-3~+1mm 相比,机 床的检测系统误差均可忽略不计^[7]。

4.2 测量过程误差

在测量过程中,需将舱体的坐标系与机床坐标系 进行找正,找正的位移精度≤0.02mm,角度偏差一般 ≤20arc/s,测量过程中位移精度与角度偏差造成的误 差相对于轮廓度-3~+1mm而言,可忽略不计^[7]。

4.3 测量探头具有一定尺寸

4.3.1 球段轮廓度测量

在百分表倾斜测量的过程中会导致水平与垂直

两个方向的测量误差,如图 2a 所示,误差计算过程 较复杂。而在水平测量的过程中只对水平方向测量产 生误差,如图 2b 所示,误差计算过程较简单。因此 后续只针对水平测量方式进行理论分析及试验验证。

对轮廓度水平测量误差补偿量进行公式推导:

$$\delta = \sqrt{\left(SR + r\right)^2 - h^2} - R - r \tag{1}$$

其中: δ ——轮廓度测量误差补偿量;SR——球体半径;R——被测量位置处界面圆半径;r——百分表球头半径。将 $h=\sqrt{SR^2-R^2}$ 代入式(1),得出:

$$\delta = \sqrt{R^2 + 2 \times SR \times r + r^2} - R - r \tag{2}$$

因此,式(2)可以作为球形舱体的轮廓度误差 补偿量的计算公式,最终轮廓度 *b=c−δ*,其中,*c*—— 修正前轮廓度值。

4.3.2 锥段轮廓度测量

百分表的测量方式对锥段舱体轮廓度测量误差 无影响,锥段舱体的轮廓度测量误差只与锥角有关, 如图 3 所示。

图 3 锥段轮廓度测量补偿计算简图

对锥段舱体的轮廓度测量误差进行计算:

 $\delta = r - r \times \cos \alpha \tag{3}$

因此,式(3)可以作为锥段舱体的轮廓度误差 补偿量的计算公式,最终轮廓度*b*=*c*+δ,其中 *c* ——修正前轮廓度值。

通过分析某型号侧壁金属壳体结构的接触式轮 廓度测量误差的影响因素,确定了测头半径引起的误 差为主要影响因素。因此,后续只针对测头半径引起 的误差进行分析及试验验证。

5 接触式轮廓度检测误差补偿试验验证

5.1 轮廓度测量误差理论分析

在百分表测量的过程中,由于被测舱体为球形舱体(*SR*533.8mm),且测头具有一定的半径,造成理论测量位置与实际测量位置间存在误差。

针对水平测量方式,根据表头直径对轮廓度水平 测量过程进行理论模拟,如图4所示。图4中前端框 上表面有 3mm 的组合加工余量。图中给出了理论高 度对应的相应直径以及相应高度对应的误差补偿量。 其中,虚线小球为理论高度和直径下对应的理想测量 位置,实线小球为理论高度和直径下对应的实际测量 位置。可以看出,在理想位置测量下表头已经切入舱 体内部,实际测量位置由于表头与舱体的干涉,使表 头实际测量点并未能与舱体上理论测量点接触,导致

此处轮廓度测量显示值增大1.74mm。

图 4 百分表水平测量球段轮廓度理论模拟

根据图 4 中理论模拟过程,可知球段对应高度测量的误差补偿量,并根据式(2)计算各高度补偿量, 结果见表 1 所示。

锥段的锥角较小,为 6.6°,根据式(3)对计算 锥段的误差量为 0.01mm,可忽略不计,因此只需对 舱体球段误差补偿。

表1 球段轮廓度测量误差补偿值

高度	0	10	50	100	150	200	250	300	350	390
理论直径	283.95	299.3	351.2	401.3	440.2	470.6	494.1	511.7	524	530.2
误差补偿量	1.74	1.55	1.03	0.66	0.42	0.27	0.16	0.09	0.04	0.01

5.2 轮廓度测量误差补偿验证一

为验证轮廓度测量误差理论分析,检测侧壁球段 舱体的轮廓度。检测流程为:舱体找正→测量基准校 准→前端框理论上端面处轮廓度测量→其余高度处 轮廓度测量→轮廓度数据总结。

测量步骤及具体内容如下:

a. 舱体找正:以前端框内孔找正,并使前端框四 个象限处平面度、同轴度一致。

b. 测量基准校准: 将百分表调至水平测量位置, 以前端框内孔半径 R257mm 为基准,压百分表至 5mm,校准前端框上端面 Z 值为+5mm(前端框上表 面余量 3mm,表头半径 2mm),校准过程如图 5 所示。

mm

a 测量基准直径校准 b 测量基准高度校准 图 5 校准基准过程

c. 前端框理论上端面处轮廓度测量: 前端框理论 上端面位置 Z=0mm,理论半径为 R283.95mm,对其 进行轮廓度检测,检测数据见表 2。

表 2 前端框理论上端面位置 Z=0mm,理论半径为 R283.95mm 处百分表读数

角度	0 °	15 °	30 °	45 °	60 °	75 °	90 °	105 °	120 °	135 °	150 °	165 °	平均值
读数	6.7	7.15	7.3	7.5	7.45	7.1	6.6	6.35	6.8	5.8	6.25	6.2	
角度	180 °	195 °	210 °	225 °	240 °	255 °	270 °	285 °	300 °	315 °	330 °	345 °	6.76
读数	6.85	7.25	7.35	7.4	7.4	7.25	6.9	6.4	4.2	6.6	6.8	6.7	

前端框理论上端面位置 Z=0mm、理论半径为 R283.95mm 处轮廓度平均值为 6.76-5=1.76mm。由于

前端框理论上端面位置 Z=0mm 为机械加工位置且距离基准校准点最近,因此此处的轮廓度平均值理论应

mm

2015年8月第4期

mm

为 0mm。对 Z=0mm 处轮廓度进行误差补偿,补偿后轮廓度平均值为 1.76-1.74=0.02mm,与理论值 0mm 接近,可以确定轮廓度测量误差补偿过程的正确性。

d. 其余高度处轮廓度测量

根据表1中轮廓度测量误差补偿值修正球段各高 度轮廓度,如表3所示。

衣) 侧壁环段扼仰轮廓反修正石裂据	:数据表	正后	修	郭度	轮	舱体	求段	壁球	侧	. 3	表
--------------------	------	----	---	----	---	----	----	----	---	-----	---

							/= x () = / (
高度	0	10	50	100	150	200	250	300	350	390
理论半径	283.95	299.3	351.2	401.3	440.2	470.6	494.1	511.7	524	530.2
0 °	-0.04	0.05	-1.03	/	/	/	/	-0.24	-0.94	-1.01
15 °	0.41	0.7	-0.73	-1.06	-0.42	-0.37	-1.76	-2.34	-1.14	-1.01
30 °	0.56	1.05	0.67	0.44	0.03	-0.82	-2.06	-1.79	-1.44	-1.01
45 °	0.76	1.15	0.57	0.74	0.58	0.48	0.34	0.11	-0.39	-0.61
60 °	0.71	1.25	1.07	-2.46	-1.87	-0.77	0.04	-0.39	-0.64	-0.66
75 °	0.36	0.95	1.42	/	-2.32		-2.06	-1.39	-1.14	-0.76
90 °	-0.14	0.35	-0.43	-1.36	0.63	-2.27	-2.16	-2.09	-0.94	-0.61
105 °	-0.39	-0.1	-0.03	0.74	/	-0.57	/	-0.34	-0.74	0.19
120 °	0.06	-0.8	/	/	/	/	/	/	0.46	0.49
135 °	-0.94	-1.55	/	/	/	/	/	/	/	0.59
150 °	-0.49	-1.25	/	/	/	/	/	/	/	0.64
165 °	-0.54	-0.45	/	/	/	/	/	/	0.76	0.49
180 °	0.11	0.6	0.62	0.14	0.58	1.23	1.74	1.71	0.96	0.29
195 °	0.51	0.8	0.47	1.04	0.18	/	/	1.16	0.56	0.19
210 °	0.61	1.05	0.27	0.59	0.68	0.63	0.64	0.41	0.16	-0.01
225 °	0.66	1.15	0.17	0.34	0.38	0.38	0.34	0.21	-0.04	-0.11
240 °	0.66	0.85	0.02	0.34	0.33	0.23	0.19	0.06	-0.19	-0.26
255 °	0.51	1.2	0.42	0.59	0.33	0.23	0.14	-0.04	-0.34	-0.41
270 °	0.16	0.5	0.72	-1.41	-1.62	-0.92	0.39	-0.29	-0.64	-0.61
285 °	-0.34	-0.35	-2.23	/	/	/	-1.51	-1.64	-1.34	-0.91
300 °	-2.54	-0.45	-1.58	-2.56	-2.92	-2.67	-2.16	-1.19	-0.84	-0.91
315 °	-0.14	0.15	-0.23	-0.36	-1.82	-1.37	-1.16	-1.19	-0.34	-0.21
330 °	0.06	0.35	0.07	-0.16	-0.27	-0.47	-0.56	-0.64	-0.89	-1.01
345 °	-0.04	0.15	-0.53	-1.86	-0.92	-0.77	-0.96	-0.79	-0.64	-0.91
平均值	0.02	0.31	-0.02	-0.37	-0.50	-0.49	-0.62	-0.54	-0.44	-0.34

通过理论计算与实际测量,验证了轮廓度测量误 差补偿方式的正确性。

6 结束语

针对返回式卫星结构的接触式轮廓度测量方法, 经过轮廓度测量误差理论分析及试验验证,证实了轮 廓度测量误差补偿的正确性,同时提高了轮廓度检测 数据的准确性。

参考文献

 1 倪颖,余景池,郭培基,等.小型非球面轮廓测量仪的原理及应用[J]. 光学精密工程,2003,11(6):612~616

- 2 徐丽丽,白万民.接触式测头测量中测头半径补偿的研究[J].机械工程 与自动化,2006(6):61~66
- 3 高健,陈岳坪,邓海洋,等.复杂曲面零件加工精度的原位检测误差补 偿方法[J]. 机械工程学报,2013,49(19):133~143
- 4 李春,刘书桂.三坐标测量机的测头半径补偿与曲面匹配[J]. 仪器仪表 学报,2003,24(4)期增刊:145~147
- 5 隋天中,王忠本.基于半球形测头的自由曲面截形测量方法[J]. 计量学报,2003,24(3): 174~253
- 6 王立成,黄信达,丁汉.原位检测系统中触发式测头的误差分析与补偿[J].中国机械工程,2012,23(15):1774~1778
- 7 赵长喜,卫月娥.大型薄壁密封舱的轮廓度检测方法[J]. 航天工艺, 2001(5): 35~36