摘要: |
本研究针对碳纤维增强聚醚醚酮(CF/PEEK)复合材料在微重力与高低温交变环境下的成形工艺机理展开系统性研究。通过分子动力学模拟与实验表征相结合,揭示了空间环境下材料热力学行为的非平衡特性:微重力环境下体系热焓值降低59.03%,树脂基体黏弹性响应异常及界面结合强度下降;高低温交变环境则调控冷却速率影响结晶度分布,诱导其界面横晶结构的非均匀生长。实验结果表明,优化工艺参数(加工温度为360 ℃、速率为2 mm/s)可使纤维/基体的界面结合具有较好的浸润效果,孔隙率降低,并通过碳纤维异相成核效应促进形成良好横晶结构。研究建立的模拟体系,为复材微重力环境下成形制造提供了工艺优化理论与技术研究,对未来推动复材在微重力等环境下的塑性成形技术的工程化应用具有重要意义。 |
关键词: CF/PEEK复合材料 微重力 高低温交变 成形工艺 分子动力学模拟 |
基金项目: |
|
Effects of Microgravity and Thermal Cycling on the Thermoplastic Forming of Carbon Fiber-reinforced Polyetheretherketone (CF/PEEK) Composites |
Zheng Shijun1, Yan Jiayong2, Cui Qingxin2, Zhang Xiao’a1, Gao Feng1, Zhang Junying1
|
1. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100020;2. Beijing Spacecraft Manufacturing Co., Ltd., Beijing 100094
|
Abstract: |
This study systematically investigates the forming mechanisms of carbon fiber reinforced polyetheretherketone (CF/PEEK) composites under microgravity and thermal cycling environments. By integrating molecular dynamics simulations with experimental characterization, the non-equilibrium thermodynamic characteristics of the material in space environments are elucidated. Under geosynchronous orbit operational conditions, the system enthalpy decreases by 59.03%, resulting in anomalous viscoelastic responses ofthe resin matrix and a significant decline in interfacial bonding strength. Thermal cycling further modulates crystallinity distribution through cooling rate control, inducing inhomogeneous growth of interfacial transcrystalline structures. Experimentalresults demonstrate that optimized process parameters (processing temperature: 360 ℃, rate: 2 mm/s) enhance interfacial wettability between fibers and the matrix, reduce porosity , and facilitate the formation of well-developed transcrystalline structures via carbon fiber-induced heterogeneous nucleation. The multi-scale simulation framework established in this study provides a theoretical foundation and technical paradigm for optimizing space-based composite manufacturing processes, advancing the engineering application of thermoplastic forming technologies for aerospace structures. |
Key words: CF/PEEK composites microgravity thermal cycling thermoplastic forming molecular dynamics simulation |